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Abstract This paper discusses two distinct, but related issues in quantum fluctuation ef-
fects. The first is the frequency spectrum which can be assigned to one loop quantum
processes. The formal spectrum is a flat one, but the finite quantum effects can be asso-
ciated with a rapidly oscillating spectrum, as in the case of the Casimir effect. The leads to
the speculation that one might be able to dramatically change the final answer by upsetting
the delicate cancellation which usually occurs. The second issue is the probability distrib-
ution for quantum fluctuations. It is well known that quantities which are linear in a free
quantum field have a Gaussian distribution. Here it will be argued that quadratic quantities,
such as the quantum stress tensor, must have a skewed distribution. Some possible implica-
tions of this result for inflationary cosmology will be discussed. In particular, this might be
a source for non-Gaussianity.

1 Introduction

This paper will deal with two aspects of quantum fluctuations. One will be the frequency
spectrum which is associated with Casimir energy, that is, with the expectation value of
the stress tensor operator or other quadratic operators. Some earlier work will be reviewed,
in which it was shown that the frequency spectra are wildly oscillating functions, which
nonetheless have finite integrals. The finite Casimir energy always corresponds to a very
small fraction of the area under one oscillation peak. The possibility of altering this remark-
able cancellation will be discussed.

The second aspect of quantum fluctuations to be considered is the probability distribution
associated with the fluctuations of smeared operators. The well-known result of a Gaussian
distribution for linear operators will be rederived. It will then be shown by way of a simple
example that the fluctuations of quadratic operators can be described by a skewed, and hence
non-Gaussian, distribution. Some further comments and speculations on the generic form of
the probability distribution for stress tensor fluctuations will be offered.

L.H. Ford (�)
Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA
02155, USA
e-mail: ford@cosmos.phy.tufts.edu



Int J Theor Phys (2007) 46: 2218–2226 2219

2 Frequency Spectra

It is well-known that the formal frequency spectrum of quantum fluctuations is flat; all
modes appear on an equal basis in the expansion of a quantum field operator. This leads
to the formally divergent zero point energy

E0 =
∑

λ

1

2
�ω. (1)

However, this “unprocessed” spectrum is unobservable. The only quantities which can be
observed arise from “processed” spectra, which have been modified by a physical process.
The formation of a black hole, for example, processes the flat spectrum of incoming vac-
uum fluctuations and converts it into a Planck spectrum of outgoing particles, the Hawking
radiation. The finite effects of one loop quantum processes may also be associated with a
nontrivial frequency spectrum. Consider the Casimir effect as an example. The presence of
boundaries modifies the divergent vacuum energy, (1), by a finite amount, the Casimir en-
ergy. For a scalar field which satisfies periodic boundary conditions in one of three spatial
dimensions, this energy is (Units in which � = c = 1 will be used in the remainder of this
paper.)

EC = − π2A

90L3
, (2)

where L is the periodicity length and A is the transverse area.
It is of interest to ask whether one can assign a finite frequency spectrum to the Casimir

energy, that is, find a function σ(ω) such that

EC =
∫ ∞

0
dωσ(ω). (3)

This was done in Refs. [1, 2], where it was shown that one can obtain σ(ω) as a Fourier
transform of the renormalized energy density operator at time-separated points. A more re-
cent discussion is given in Ref. [3]. Let Tμν(t − t ′) be the renormalized stress tensor operator
evaluated at two points separated in time by t − t ′. Then Tμν(0), the operator evaluated at
coincident points, is the observable stress-energy associated with the Casimir effect. In par-
ticular,

EC = ALTtt (0). (4)

We can write

σ(ω) = AL

π

∫ ∞

−∞
eiωtTtt dt. (5)

This function was evaluated explicitly for the electromagnetic case in Ref. [2], and for the
case of a scalar field in Ref. [1]. In the latter case, the result is

σ(ω) = −Aω2

πL
S(ωL), (6)

where

S(x) =
∞∑

n=1

sin(nx)

n
(7)
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Fig. 1 The frequency spectrum,
σ(ω), given by (6) for the
Casimir energy. The oscillations
almost exactly cancel, leaving a
net area under the curve equal to
that of the shaded region
indicated by the arrow. Here σ is
in units of 2A/L and ω in units
of 2π/L

is a discontinuous, periodic function given by S(x + 2π) = S(x) and

S(x) = 1

2
(π − x), 0 ≤ x < 2π. (8)

At first sight, the integral of σ(ω) over all frequencies is poorly defined. However, it can
be defined with a suitable convergence factor, such as an exponential function. One finds
that the Casimir energy arises in the limit in which the convergence factor is removed. For
example,

EC = lim
β→0

∫ ∞

0
dωe−βωσ (ω). (9)

The result is that the contributions of different frequency intervals almost exactly cancel one
another, leaving a finite result which is small compared to the area of each of the peaks in
Fig. 1.

A similar spectrum can be associated with the asymptotic Casimir–Polder potential be-
tween a polarizable particle, such as an atom in its ground state, and a perfectly reflecting
wall. In the limit that the atom is far from the plate, compared to the wavelength associated
with the transition between the ground state and first excited state, Casimir and Polder [5]
showed that the interaction energy is, in Gaussian units,

VCP = − 3α0

8πz4
, (10)

where z is the distance to the wall, and α0 is the static polarizability of the atom. It may be
expressed as

VCP = α0

4πz3

∫ ∞

0
dωσ(ω), (11)

where, in this case,

σ(ω) = [(2ω2z2 − 1) sin 2ωz + 2ωz cos 2ωz]. (12)

As before, the integral on ω may be defined using a convergence factor. The frequency
spectrum in this case is illustrated in Fig. 2.
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Fig. 2 The frequency spectrum,
σ(ω), for the Casimir–Polder
potential. The oscillations again
almost exactly cancel, and the net
area is equal to that of the shaded
region indicated by the arrow

As we have seen, the frequency spectra associated with Casimir-type effects can be
wildly oscillatory, and yet tend to integrate to a small net energy. An obvious question is
whether it may be possible to slightly modify the contribution of specific frequency inter-
vals and upset the delicate cancellation between the different positive and negative peaks
in Figs. 1 and 2. For example, if one could alter the reflectivity of parallel plates just in a
selected frequency range, it would seem to be possible to have a Casimir force much larger
than that between perfectly reflecting plates, and which could be repulsive as well as attrac-
tive [4]. A large, repulsive Casimir force could have significant industrial applications, such
as allowing nearly frictionless bearings. Unfortunately, it is not at all straightforward to en-
hance Casimir forces. One might replace perfectly reflecting plates by dielectric slabs, which
will have a finite, frequency dependent reflectivity. However, the Lifshitz theory [6] predicts
that the force between two dielectric half-spaces will always be attractive and smaller in
magnitude that the force in the perfectly reflecting limit. At least part of the reason for this
is that the dielectric function ε(ω) must satisfy the Kramers–Kronig relations, which follow
from the requirement of analyticity in the upper-half ω plane. This analyticity property is in
turn a consequence of causality [7]. Analyticity constrains ε(ω) in such a way that the con-
tributions of various frequency regions continue to cancel efficiently. If one were to allow
non-analytic dielectric functions, then it becomes possible to construct situations in which
the Lifshitz theory predicts repulsive forces [4].

Another approach to attempt to enhance Casimir forces was taken in Ref. [8]. There the
force due to the quantized electromagnetic field on a small dielectric sphere near a perfectly
reflecting plate was calculated A quasi-oscillatory result was obtained, which can be ei-
ther attractive or repulsive, and is much larger in magnitude than the Casimir–Polder force,
from (10), for a non-dispersive sphere. In Ref. [9], it was shown that the qualitative form of
the result does not depend upon whether the plate is perfectly reflecting or not. In both cases.
the sphere was taken to have a plasma model dielectric function, and the resulting force os-
cillations as a function of distance from the plate have a scale set by the associated plasma
wavelength. One can think of the effect of the sphere’s nontrivial frequency response as up-
setting the cancellations that occur for a non-dispersive sphere, and which are illustrated in
Fig. 2.

If the vacuum modes of the electromagnetic field gave the only contribution to the force
on the sphere, then there would be a large repulsive force on the sphere at certain separations
which would be large enough to levitate the sphere in the earth’s gravitational field, and
should be observable. However, there is another contribution to the net force coming from
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quantum mechanical fluctuations of the electric charge within the sphere. This is the effect
of what is sometimes called the plasmonic modes. It was suggested by Barton [10] that
the effect of the plasmonic modes should cancel the quasi-oscillatory terms coming from
the vacuum modes. This suggestion is in fact correct, and was recently confirmed by an
explicit calculation [11]. There is still a nonzero net force, but it is always attractive and
of the order of magnitude of that for a non-dispersive sphere. The cancellation occurs only
if the sphere plasmon modes are in their ground state. If they are excited, then the quasi-
oscillatory behavior appears in the net force. This is similar to the case of an atom. If the
atom is in its ground state, then the force is attractive at all separations [5]. If the atom is
in an excited state, however, the net force is quasi-oscillatory and typically much larger in
magnitude than in the ground state [12]. It is still unclear why the plasmon modes can cancel
the effects of the vacuum modes so efficiently, and whether one can engineer materials with
repulsive Casimir forces without exciting plasma oscillations.

3 Probability Distributions

In this section, we will turn to a somewhat different measure of vacuum fluctuations, the
probability distribution associated with the fluctuations. First consider the case of a quantity
which is linear in a free quantum field. It is well known that such quantities have a Gaussian
distribution of probabilities. However, it will be worthwhile illustrating this result with an
explicit example. Let ϕ(x) be a free scalar field and let

ϕ̄ =
∫

ϕ(x)dV (13)

be a smeared field operator averaged over some spacetime region. The dimension of the
spacetime is not relevant here. We could also include a sampling function f (x) and write
f (x)dV in place of dV without changing the result. Next consider the expectation value of
a power of ϕ̄ in the vacuum state. All of the odd powers have vanishing expectation value
because the n-point functions vanish for all odd n. That is,

〈ϕ̄2n+1〉 =
∫

〈ϕ1ϕ2 · · ·ϕ2n+1〉dV1dV2 · · ·dV2n+1 = 0, (14)

where ϕ1 = ϕ(x1), etc. However, all of the even moments are nonzero and can be expressed
as powers of the second moment,

〈ϕ̄2〉 =
∫

〈ϕ1ϕ2〉. (15)

For example, the identity

〈ϕ1ϕ2ϕ3ϕ4〉 = 〈ϕ1ϕ2〉〈ϕ3ϕ4〉 + 〈ϕ1ϕ3〉〈ϕ2ϕ4〉 + 〈ϕ1ϕ4〉〈ϕ2ϕ3〉 (16)

leads to the result

〈ϕ̄4〉 = 3〈ϕ̄2〉2. (17)

This is a special case of the general result

〈ϕ̄2n〉 = (2n − 1)!!〈ϕ̄2〉n. (18)
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The latter result can be obtained from the following counting argument. Wick’s theorem
allows us to decompose the 2n-point function 〈ϕ1ϕ2 · · ·ϕ2n〉 into a sum of products of two-
point functions, just as is illustrated in (16). All that we need to know is the number of terms
in this sum. The first contraction of the 2n-point function contains 2n − 1 terms, as we can
select any field to start, and it then has 2n− 1 partners with which it can be contracted. Sim-
ilarly, the contraction of each (2n − 2)-point function to (2n − 4)-point functions contains
2n − 3 terms, and so on, leading to the factor of (2n − 1)!! in (18).

This result for the general even moment implies that the probability distribution is a
Gaussian function

P (ϕ̄) = 1√
2π〈ϕ̄2〉e−2ϕ̄2/〈ϕ̄2〉, (19)

which is confirmed by the facts that

〈ϕ̄2〉 =
∫ ∞

−∞
x2P (x)dx (20)

and that

〈ϕ̄2n〉 =
∫ ∞

−∞
x2nP (x)dx = (2n − 1)!!〈ϕ̄2〉n. (21)

The result that P (ϕ̄) is a Gaussian function is responsible for the prediction of Gaussian
fluctuations in inflationary cosmology. In most versions of inflation, density perturbations
are linked to the quantum fluctuations of a scalar inflaton field, which is treated as a free
field [13]. This leads to a Gaussian distribution of density fluctuations, which seems to be
consistent with observation [14].

Let us now turn to the fluctuations of quadratic operators, such as the smeared stress ten-
sor. Now there is no particular reason to expect the probability distribution to be symmetric,
much less Gaussian. In fact, as we will see from an explicit example, the distribution is in
general a skewed one. The example will involve a massive scalar field in two-dimensional
Minkowski spacetime, but in the limit of a very small mass. The Hadamard function for this
field is

G(x,x ′) = 1

2
{ϕ(x),ϕ(x ′)} = −1

4
N0(m

√
�t2 − �x2), (22)

where m is the mass and N0 is a Neumann function. In the limit of small m, this function
becomes

G(x,x ′) = − 1

4π
ln[μ2(�t2 − �x2)], (23)

where μ = eγ m/2 and γ is Euler’s constant. The commutator function, in the limit that
m → 0, is

GC(x, x ′) = [ϕ(x),ϕ(x ′)] = i

4
[θ(�x − �t) − θ(�x − �t)], (24)

where θ(x) = 1 for x > 0 and θ(x) = −1 for x < 0. Note that the commutator function is
finite for m = 0, whereas the Hadamard function has a logarithmic divergence in this limit.
This is a well-known feature of the massless scalar field in two-dimensional Minkowski
spacetime. This divergence can be removed by selecting a vacuum state which breaks
Lorentz invariance [15], but here we will assume a small, nonzero mass.
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Next consider the average of the normal ordered square of ϕ over a finite time interval

ϕ̄2 = 1

T

∫ T

0
:ϕ(t)2:dt. (25)

In this model, all of the field operators will be taken to be at the same point in space, so that
�x = 0. We wish to calculate the vacuum expectation value of various powers of ϕ̄2. Begin
with the second moment,

〈(ϕ̄2)2〉 = 1

T 2

∫ T

0
dt1

∫ T

0
dt2〈:ϕ(t1)

2::ϕ(t2)
2:〉 = 2

T 2

∫ T

0
dt1

∫ T

0
dt2〈ϕ(t1)ϕ(t2)〉2, (26)

where the last step follows from Wick’s theorem. The unsymmetrized two-point function
can be written as a sum of the Hadamard and commutator functions

〈ϕ(t1)ϕ(t2)〉 = G(t1, t2) + 1

2
GC(t1, t2). (27)

We can now evaluate the second moment explicitly and find

〈(ϕ̄2)2〉 = 1

2π2
ln2(T μ) (28)

in the limit that T μ � 1. In this limit, the Hadamard function part of the two-point function
gives the leading contribution.

Next we turn to the third moment

〈(ϕ̄2)3〉 = 1

T 3

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3〈:ϕ(t1)

2::ϕ(t2)
2::ϕ(t3)

2:〉, (29)

which can be written as

〈(ϕ̄2)3〉 = 8

T 3

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3〈ϕ(t1)ϕ(t2)〉〈ϕ(t2)ϕ(t3)〉〈ϕ(t1)ϕ(t3)〉. (30)

In the limit of small T μ, this becomes

〈(ϕ̄2)3〉 = − 1

π3
ln3(T μ) =

[
1

π
ln

(
1

T μ

)]3

. (31)

The third moment is positive 〈(ϕ̄2)3〉 > 0, and of the same order of magnitude as the second
moment in the sense that

〈(ϕ̄2)3〉 1
3 = √

2〈(ϕ̄2)2〉 1
2 . (32)

Thus the probability distribution is significantly skewed.
The corresponding calculations for components of the quantum stress tensor have not yet

been performed, but it is reasonable to guess that the results will be similar to those of this ϕ2

model in two dimensions. The technical details are somewhat more complicated, however.
Let

T̄ =
∫

:Ttt :f (x)dV (33)
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be the average of the normal-ordered energy density over a spacetime region defined by the
non-negative sampling function f (x). The stress tensor correlation function is singular in
the limit of null separated points,

〈:Ttt (x)::Ttt (x
′):〉 ∼ (x − x ′)−2d , (34)

where d is the number of spacetime dimensions. Thus the integral for the second moment
〈T̄ 2〉 will appear to contain a non-integrable singularity. However, it is possible to define
such integrals using an integration by parts procedure [16–18]. It is also possible to use di-
mensional regularization [19]. In both approaches, the integral becomes finite. The third and
higher moments can be defined in a similar manner. If 〈T̄ 3〉 > 0, as in the case of the ϕ2

mode, then the probability distribution will again be skewed. There should be a connection
between this distribution and the quantum inequalities which set lower bounds on the ex-
pectation value of T̄ in non-vacuum states [20–28]. In the case of temporal averaging only,
these inequalities are of the form

〈T̄ 〉 ≥ T̄lb = − C

τd
, (35)

where τ is the characteristic width of the sampling function and C is a constant. Thus neg-
ative energy densities are allowed in quantum field theory, but are tightly constrained. The
lower bound in the expectation value in an arbitrary quantum state, and the lower bound on
the probability distribution of fluctuations in the vacuum state are expected to coincide [29].
One way to understand this is to imagine writing the Minkowski vacuum state as a superpo-
sition of an alternative basis set of states. In each of these states, the measured T̄ is bounded
below by T̄lb. Hence the possible fluctuations which can be observed in the Minkowski vac-
uum state are also bounded below by the same value. If the probability distribution P (T̄ )

has positive skewness and a finite negative lower bound at T̄ = T̄lb, then we can make some
general observations on P (T̄ ). The first moment is defined to vanish, 〈T̄ 〉 = 0. A positive
third moment implies a long tail in the positive direction. Thus the greater portion of the
area will lie to the left of T̄ = 0. Thus a typical measurement of the sampled energy density
is more likely to yield a negative than a positive value. However, when the measured value is
positive, its magnitude is likely to be greater than when it is negative. Figure 3 is a sketch of a
hypothetical probability distribution which satisfies all of these conditions. A more detailed
analysis of the probability distribution for various cases is currently in progress [29].

Fig. 3 A possible probability
distribution P(T̄ ) for stress
tensor fluctuations is illustrated
as a function of an averaged
stress tensor component T̄ . This
distribution is zero below the
lower bound, T̄ < T̄lb < 0, but
has a nonzero tail extending
infinitely far in the positive
direction. The majority of the
area under the curve lies in the
negative region, T̄ < 0
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The non-Gaussian nature of quantum stress tensor fluctuations may have applications to
inflationary cosmology in the form of a source of a non-Gaussian component in the density
perturbations. This is currently under investigation [30].
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